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Abstract— Neural prostheses have received considerable at-
tention due to their potential to dramatically improve the qual-
ity of life of severely disabled patients. Cortically-controlled
prostheses are able to translate neural activity from cerebral
cortex into control signals for guiding computer cursors or
prosthetic limbs. Non-invasive and invasive electrode tech-
niques can be used to measure neural activity, with the
latter promising considerably higher levels of performance and
therefore functionality to patients. We review here some of our
recent experimental and computational work aimed at estab-
lishing a principled design methodology to increase electrode-
based cortical prosthesis performance to near theoretical limits.
Studies discussed include translating unprecedentedly brief
periods of “plan” activity into high information rate (6.5 bits/s)
control signals, improving decode algorithms and optimizing
visual target locations for further performance increases, and
recording from chronically implanted arrays in freely behaving
monkeys to characterize neuron stability. Taken together, these
results should substantially increase the clinical viability of
cortical prostheses.
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I. I NTRODUCTION

EACH year hundreds of thousands of people suffer
from neurological injuries and disease, resulting in

the permanent loss of motor function. In many cases, the
disability is so severe that it is not even possible to feed
oneself or communicate. Though surgical and medical in-
terventions have made it possible to repair peripheral nerves
and promote recovery in many cases, most central nervous
system impairments still do not have effective treatments.
Electronic medical systems that interface with the nervous
system, termed neural prostheses, have started to fill some
of these treatment gaps.
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The ultimate goal of any prosthesis is to restore normal
function. Though complete restoration is ideal, prostheses
are clinically viable when the anticipated quality of life
improvement outweighs the potential risks. Since neural
prostheses must often measure or perturb neurons in the
central nervous system, non-invasive techniques are par-
ticularly attractive and have been investigated extensively.
Invasive electrode techniques have also become a major
research thrust due to their high signal quality (i.e., action
potentials from individual neurons). If, as a result, prosthetic
performance can substantially surpass what is possible with
non-invasive measurement techniques, and surgical risk can
be sufficiently minimized, it is anticipated that invasive
electrode-based prostheses will find more widespread use.
Thus we need to understand the fundamental, neurobiolog-
ically dictated performance limits of electrode-based neural
prostheses and establish a principled design methodology to
achieve these theoretical limits. If successful, these advances
should help accelerate the translation of laboratory proof-
of-concept systems into widespread clinical use. We review
below some of our recent experimental and computational
work aimed at increasing the performance of cortically-
controlled prostheses.

A. Motor and Communication Prostheses

Figure 1 illustrates the basic operating principle behind
motor and communication prostheses. Neural activity from
various brain regions is electronically processed to create
control signals for enacting the desired movement. When
permanently-implanted arrays of electrodes are employed, it
is possible to identify individual neurons near the tip of each
electrode through a process termed action potential (spike)
sorting [7, 8]. After determining how each neuron responds
before and during a movement, typically accomplished by
correlating arm movements with neural activity, estimation
(decode) algorithms can infer the desired movement from
only the neural activity [9, 10]. The system can then
generate control signals to continuously guide a paralyzed
arm or a prosthetic arm through space (motor prosthesis),
or to position a computer cursor on the desired letter on a
keyboard (communication prosthesis).

Motor and communication prostheses are quite similar
conceptually, but important differences critically affect their
design. Motor prostheses must produce movement trajec-
tories as accurately as possible in order to enact precisely
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Fig. 1. Concept sketch of cortically-controlled prostheses. Several cortical
areas in rhesus monkeys, and in homologous areas in humans, participate
in the preparation and execution of natural arm movements. Areas include
the medial intra-parietal area (MIP) / parietal reach region (PRR) with
largely plan activity [1, 2], the dorsal aspect of pre-motor cortex (PMd)
with both plan and movement activity [3], and motor cortex (M1) with
largely movement activity [4–6]. Neural prostheses measure electrical
neural signals (action and local field potentials) using arrays of chronically-
implanted electrodes, extract action potential times for each neuron on every
electrode and, finally, estimate the desired arm movement and generate
control signals for guiding prosthetic devices.

the desired movement. Thuscontinuousprosthetic guidance
is necessary, and performance measures must quantify the
similarity between the prosthetic movement and the de-
sired movement. In contrast, communication prostheses are
concerned with information throughput from the subject to
the world; this makes the speed and accuracy with which
keys on a keyboard can be selected of primary importance.
Although a continuously guided motor prosthesis could be
used to convey information by moving to a key, only the
key eventually struck contributes to information conveyance.
Thus, simplediscreteprosthesis positioning is sufficient for a
communication prosthesis [1]. For example, if it is possible
to predict which letter on a keyboard is desired, a computer
cursor could be directly positioned on (“hopped to”) that
key as opposed to sliding out to strike the key.

B. Plan and Movement Activity

Two types of neural activity are well suited for driving
prosthetic movements. Plan activity is present before arm
movements begin and is believed to reflect preparatory
processing required for the fast and accurate generation of
movement [11]. This activity is readily observed before
movement initiation in a delayed reach task. Delayed reach
tasks begin by presenting a visual reach target. After a brief
delay period, a “go” cue indicates that a reach may begin.
Plan activity in premotor cortex appears soon after reach-
target onset, persists until just after the “go” cue, and is
tuned for the direction and extent of the upcoming movement
[12]. Movement activity follows plan activity in a delayed

reach task, being present immediately before and during the
movement. Movement activity is tuned for both the direction
and speed of arm movement [13].

Until recently, both motor and communication prostheses
have focused exclusively on movement activity. Movement
activity can be decoded to generate instantaneous direction
and speed signals, which are used to guide a prosthetic
device along a trajectory [4–6]. Motor prostheses must
incorporate movement activity since the goal is to recreate
the desired movement path and speed.

In contrast, communication prostheses are not obliged to
move the prosthetic device along a continuous path in order
to strike a target such as a key on an on-screen keyboard
(although several system do operate in this fashion [14–
16]). Instead, if target location can be estimated directly
from neural plan activity, the cursor can be positioned
immediately on the desired key. Recent reports suggest that
there may be considerable performance benefit to using plan
activity and direct-positional prosthesis control [1, 2], and
we review directly below recent confirmation [3].

II. RECENT RESULTS

A. A 6.5 bps Communication Prosthesis

To investigate how quickly and accurately a commu-
nication prosthesis can perform when driven by cortical
plan activity, we conducted a series of experiments and
computational simulations [3]. As shown in Fig. 2a, we
trained monkeys to fixate [17] and touch central targets, and
plan to reach to a visual target that could appear at one of
several (2, 4, 8 or 16) different locations. Meanwhile we
collected action potentials from all neurons recorded with a
96 electrode array (typically 100-200 neural units) and used
the number of action potentials during an integration period
(Tint) to predict where the monkey was planning to reach.
If our prediction, made using maximum likelihood (ML)
techniques and Gaussian or Poisson neural response models,
matched the true target location we displayed a circle around
the target, played an auditory tone and provided a liquid
reward to indicate a successful trial. In this way we were
able to assess how fast selections could be made, and how
often the selections were correct.

While it is possible to predict the desired target location
using neural activity from a variety of different Tint win-
dows [1, 2], we optimized Tint in order to maximize
performance. We first conducted a series of delayed reach
experiments to determine how rapidly movement plans form
in PMd following the onset of a peripheral reach target. This
time (Tskip) includes the visual latency for PMd to “see”
the target, the time required to select the desired target from
among other potential targets (not shown in Fig. 2), and the
time for a plan to stabilize. Using ML based methods we
found Tskip to be approximately 150 ms across a variety
of conditions, which is in good agreement with “normalized
variance” based methods [11] and dynamical systems meth-
ods [18] applied to similar data. The Tint window should
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Fig. 2. Overview of recent high-performance communication prosthesis experiments, simulations and results. (a) Real-time prosthetic cursor placement
task begins by fixating and touching central targets, followed by the appearance of a peripheral target to which the monkey plans (but does not execute) a
reach. A period of neural data following this target onset (Tgt on) is set aside (Tskip), a period of neural data (Tint) is then analyzed in order to estimate the
desired target (target̂m with highest probability,P (m̂); m̂=2 in this example) which could have appeared in one of 8 locations in this task and, following
a brief computational decode and display rendering “overhead” period (Tdec+rend) the predicted target is encircled. (b) Design simulations performed
with neural data to help identify best Tint time (data and simulations to optimize Tskip not shown). Single-trial decode accuracy (black) and information
transfer rate capacity (ITRC, red) were calculated offline from experiment H20041118. An 8 target configuration was used in the experiment. Trial length
was taken to be (Tskip + Tint + Tdec+rend) ms with Tskip fixed at 150 ms and Tdec+rendfixed at 40 ms. Tint was varied and performance extrapolated.
Red asterisk indicates the best predicted ITRC (7.7 bps) and associated Tint (70 ms; Tint = trial length - Tskip - Tdec+rend). (c) Experimentally measured
single-trial accuracy (black) and ITRC (red). Performance is plotted for an 8 target configuration (to be compared with panel b) and a 16 target configuration
across varying total trial lengths. All results are from monkey H and each data symbol represents online performance calculated from one experiment
(many hundreds of trials). Note that within each target configuration, accuracy increases as a function of Tint and ITRC shows a peak (red asterisk) close
that predicted by simulation (compare with asterisk in panel b). Across target configurations (2 and 4 target results not shown), average accuracy drops as
a function of the number of targets while ITRC increases until saturating around 6.5 bps with both 8 and 16 target configurations. Adapted from [3].

begin immediately after Tskip: any sooner would introduce
“plan noise” into the decoder, any later would slow down
trial pace.

Next, as shown in Fig. 2b, we ran simulations to determine
the optimal Tint duration. While the accuracy with which
the reach target can be predicted continues to increase as
Tintexpands, overall performance (quantified in terms of
information transmission rate capacity, ITRC, in bits/s) has
a peak [3]. This is because beyond some Tint point of
diminishing returns (i.e., the optimal Tint), accuracy fails
to increase rapidly enough to overcome the slowdown in
trial pace accompanying long Tint durations.

Finally, we conducted experiments to verify the existence
and location of the optimal ITRC operating point. As shown
in Fig. 2c, the ITRC peak occurred near the anticipated
Tint value and 6.5 bps performance was achieved. This
6.5 bps result required optimization of several parameters
including Tskip and Tint and compares favorably with previ-
ous state-of-the-art reports (e.g., 1.6 bps [19]). Intriguingly,
∼6.5 bps was also achieved with a 16 target configuration
which increased the task difficulty (4 bits/trial maximum, as
opposed to 3) but resulted in lower single-trial accuracy. It
appears that performance may be saturating; pushing beyond
6.5 bps will require other optimizations, as discussed below.

B. Beyond 6.5 bps — Countering Response Non-Stationarity

While 6.5 bps represents a substantial increase in perfor-
mance, it fell 1.2 bps short of our expectations based on
simulations (Fig. 2b). Further analysis revealed that this
was due in part to changes in the response of individual
neurons: firing rates often became more or less intense

depending on when, in a high-speed sequence of prosthetic
target trials, the response was measured [20]. Fig. 3 shows
one neuron (left panel) that responds more to the 230◦

reach target when it appears first in a “chain” than when
it appears third. Similarly, the neuron in the right panel is
less responsive to the 310◦ target when it appears first than
when it appears third. Fortunately, by recognizing this and
other (e.g., motivational state) response non-stationarities,
adaptive “auto-normalizing” algorithms can partly counter
these effects [21].

C. Beyond 6.5 bps — Optimizing Target Placement

The performance results above were obtained using
“canonical” reach target layouts, which are typically
symmetric target configurations which reflect the
experimenter’s best guess as to which targets will be
maximally discriminible. Canonical layouts are independent
of the tuning properties of the neurons available and can
limit performance. We recently sought to increase decode
accuracy by judiciously selecting the locations of the
reach targets based on the characteristics of the neural
population at hand. We developed an optimal target
placement (OTP) algorithm that approximately maximizes
decode accuracy with respect to target locations [22].
Using maximum likelihood decoding, the optimal target
placement algorithm yielded up to 11 and 12% accuracy
improvement for two and sixteen targets, respectively. The
OTP solution for a sixteen target experiment is shown in
Fig. 4. For four and eight targets, gains were more modest
(5 and 3%, respectively) as the target layouts found by the
algorithm closely resembled the canonical layouts. Thus,
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experiment as illustrated in Fig. 2a are plotted versus the order presented
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the algorithm can serve not only to find target layouts
that outperform canonical layouts, but it can also confirm
or help select among multiple canonical layouts. These
results indicate that the OTP algorithm is a valuable tool
for further increasing prosthesis performance.

D. Beyond 6.5 bps — Internally Selected Targets

The performance results above were also obtained by vi-
sually cueing a sequence of targets. By increasing the speed
with which these targets were presented, the maximum rate
of externally cuedreach planning was assessed. The true rate
of planning reaches to spatial targets may be considerably
higher if these targets are selected internally. To conduct
experiments where targets are displayed and monkeys are
able to plan reaches to these targets at will, we must first
develop algorithms capable of automatically detecting when
neurons are planning reaches. We have recently reported
preliminary results demonstrating this detection [23], using
simple ML estimation techniques [1]. Considerably better
“state estimation” is possible using more sophisticated Hid-
den Markov Models [24]. With these algorithms we hope to
measure the maximum rate of internal target selection and
planning.

E. Neural Stability & Adaptive Algorithms

Finally we must consider the stability of chronically-
implanted electrode arrays and how best to design adaptive
algorithms to contend with any instability or non-stationarity.
While it is well recognized that electrode arrays are able to
record from the same cortical area for many months or even
a few years without substantial signal degradation [28], it
is also well recognized that immunological responses, and
likely other still unidentified mechanisms, cause complete
or near complete signal loss on the time scale of months
to years [29]. Several efforts are underway to design novel
materials and coatings to dramatically improve electrode sta-
bility. However, the stability of neural activity, mechanisms
of instabilities, and the design of adaptive spike sorting and
decoding algorithms remain poorly understood.
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Fig. 4. Sixteen target optimal target placement (OTP) example. Blue
circles: OTP solution; red squares: uniformly spaced targets around a circle,
as an experimenter might use without OTP methods. Note, two concentric
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lacking OTP methods. Black lines show the preferred direction (line angle)
and tuning strength (∝ line length) for each of 189 neural units recorded
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To answer these questions, we recently built a light-
weight, low-power, autonomous recording system capable
of recording broadband neural signals and 3D head accel-
erations [25–27]. The entire system fits within a small
head-mounted enclosure, as shown in Fig. 5a. Preliminary
data suggest that rapid accelerations can cause abrupt shifts
in action potential waveforms as well as longer timescale
changes, as shown in Fig. 5b. By tracking neural waveforms
continuously it should be possible to certify neurons as being
the same across days. This is critical for multi-day plasticity
experiments and to maintain prosthetic decode performance,
which would be compromised by uncertain neuron identity.

III. C ONCLUSION

In an attempt to increase the clinical viability of cortically-
controlled communication prostheses, we have designed
and demonstrated a system capable of 6.5 bps perfor-
mance. Further performance gains are achieved with a
better understanding of cortical dynamics and response
non-stationarities, employing optimal target placement al-
gorithms, exploring internally selected target tasks, and by
characterizing electrode-neuron stability so as to optimally
design adaptive neuron-identification algorithms.
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